209 research outputs found

    Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps

    Full text link
    Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological pathways, the incorporation of prior pathways information into a statistical model is expected to increase the power to detect true associations in a genetic association study. Most existing pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence patterns among SNPs within pathways. We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways associated with a quantitative trait. Notable features of our "pathways group lasso with adaptive weights" (P-GLAW) algorithm include the incorporation of all pathways in a single regression model, an adaptive pathway weighting procedure that accounts for factors biasing pathway selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-GLAW takes account of the presence of overlapping pathways and uses a novel combination of techniques to optimise model estimation, making it fast to run, even on whole genome datasets. In a comparison study with an alternative pathways method based on univariate SNP statistics, our method demonstrates high sensitivity and specificity for the detection of important pathways, showing the greatest relative gains in performance where marginal SNP effect sizes are small.Comment: 29 page

    Deep Neural Networks for Anatomical Brain Segmentation

    Full text link
    We present a novel approach to automatically segment magnetic resonance (MR) images of the human brain into anatomical regions. Our methodology is based on a deep artificial neural network that assigns each voxel in an MR image of the brain to its corresponding anatomical region. The inputs of the network capture information at different scales around the voxel of interest: 3D and orthogonal 2D intensity patches capture the local spatial context while large, compressed 2D orthogonal patches and distances to the regional centroids enforce global spatial consistency. Contrary to commonly used segmentation methods, our technique does not require any non-linear registration of the MR images. To benchmark our model, we used the dataset provided for the MICCAI 2012 challenge on multi-atlas labelling, which consists of 35 manually segmented MR images of the brain. We obtained competitive results (mean dice coefficient 0.725, error rate 0.163) showing the potential of our approach. To our knowledge, our technique is the first to tackle the anatomical segmentation of the whole brain using deep neural networks

    Sparse multi-view matrix factorisation: a multivariate approach to multiple tissue comparisons

    Full text link
    Gene expression levels in a population vary extensively across tissues. Such heterogeneity is caused by genetic variability and environmental factors, and is expected to be linked to disease development. The abundance of experimental data now enables the identification of features of gene expression profiles that are shared across tissues, and those that are tissue-specific. While most current research is concerned with characterising differential expression by comparing mean expression profiles across tissues, it is also believed that a significant difference in a gene expression's variance across tissues may also be associated to molecular mechanisms that are important for tissue development and function. We propose a sparse multi-view matrix factorisation (sMVMF) algorithm to jointly analyse gene expression measurements in multiple tissues, where each tissue provides a different "view" of the underlying organism. The proposed methodology can be interpreted as an extension of principal component analysis in that it provides the means to decompose the total sample variance in each tissue into the sum of two components: one capturing the variance that is shared across tissues, and one isolating the tissue-specific variances. sMVMF has been used to jointly model mRNA expression profiles in three tissues - adipose, skin and LCL - which are available for a large and well-phenotyped twins cohort, TwinsUK. Using sMVMF, we are able to prioritise genes based on whether their variation patterns are specific to each tissue. Furthermore, using DNA methylation profiles available, we provide supporting evidence that adipose-specific gene expression patterns may be driven by epigenetic effects.Comment: in Bioinformatics 201
    • …
    corecore